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EVOLUTION OF LOCALIZED DISTURBANCES OF A STRATIFIED FLUID WITH 
VARIABLE BRENT-VAISALA FREQUENCY* 

A.P. ANYUTIN and V.A. BOROVIKOV 

We construct the approximate expression for Green's function P(t, Jz~ Z, zO) of the 
equation of internal waves in the case of a variable buoyancy frequency-squared 

which has, for 2, :,>O and t-w, the same short-wave asymptotic form as the exact Green's 

function. This asymptotic form proves to be qualitatively different from the case nr = +,nst ( 
considered in detail by many authors, see e.g., /l-lo/*. (*Gorodtsov V.A. and Teodorovich 

E.V., Linear internal waves in an exponentially stratified ideally incompressible fluid, 

Preprint Inst. Problem Mekhaniki, AN SSSR, ~~OSCOW, No.114, 1978.) With N=const Green's 

function decreases as t-az as t-"and consists of two terms I?~ pi',, where P, oscillates with 

frequency ,v, and FZ with frequency .vcosO (I3 is the angle between the direction from the source 

to the point of observation and the z axis /4, 5, 8/). For A'=B"z Green's function oscillates 

only outside the domain V, given by the equation ~~/-;*/,~z--z~~~~, where Z- = min (z, za), r = 1/z' T y". 
Inside V, Green's function does not oscillate but decreases monotonically as t-1. Outside V, 

the function consists of two terms similar to 1‘, and fp for the case N=const. 

1. Formulation of the problem. The problem of the propaqation and evolution of 

small disturbances of linear internal waves in an unbounded ideally stratified fluid in the 

case of localized initial disturbances amounts to constructing Green's function I- (1, 1/Z_, Z, 

za), i.e., to find, for t>u, the solution of the equation 

with the initial conditions at t= 0 
AT = 0; aiat AF = 6 (z) d (y) 6 (Z - a,) (I.?) 

The asymptotic form of r as t-m determines the asymptotic form of the wave field in 

the case of localized initial disturbances. 

In the case of constant N[l-101 Green's function P is constructed by Fourier's method 

/4, 5, 8/, and its asymptotic form as t--r m in /5/: r = r_(t)+ l’+(tI costl I), where 

(1.3, 

The first term here is a standing wave, which oscillates with frequency N, while the 

second has spatial oscillations, whose wavelength tends to zero as t- X. The crests of the 

waves of the second term are cones with vertical z axis, and angle a = MC CDS [n(,~ - I/,)(_\ [)-'I which 

increases with t. 
We consider below a medium with the linear dependence 

S? (2) = B"z (1.4) 

Since fiz(;)<O for z<O and the stratification is unstable, we shall neglect the 

solutions which increase as Z--W. For this medium and a source locatedatthepoint Z= zO>u, 
r.=r'L+yiiO, we construct the approximate expression u for the Green's function, i.e., the 

exact solution of (l.l), which satisfies approximately the initial conditions (1.2), up to a 

function which is analytic for z,>O and any r. 

It will be shown that our solution, instead of oscillating everywhere, only oscillates 

outside a funnel whose equations are 
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(1.5) 

le outside, it Inside the funne 1, the field decreases monotonically as t-a, as t-l, whi 

consists of two terms similar to (1.3). 

We naturally expect that our assumptions will not affect the qualitative features of the 

field, i.e., its oscillations, whose wavelength tends to zero as t-+m. 

2. Construction of Green's function, To find Green's function u(t, r,z,z,), we will 
construct the approximate expression T (t, r, 2, 20) for Green's function in the half-space 

z<H(H>l) with zero boundary condition at z=H and the condition of exponential decrease 

as z-m, after which we find u as the limit of r as H-a?. Since the expression thus 

obtained for u will nowhere be checked directly, we shall briefly describe the procedure for 
constructing functions T and u, without dwelling on the proof of the approximations employed. 

Green's function in the layer H,<z< H, for zero boundary conditions at J= Ii,, H, has 
the form /ll/ 

(2.2) 

where L,, is a normalizing factor, Jo(kr) is the Bessel function, and oT1 = on (k) and '111 (k. 2) 
are the eigenvalues and eigenfunctions oftheboundary value problem 

m,," + k’/o,,-’ (W (z) - cona) vF, -= 0, ‘0, (k, Ho) = v,, (kH1) = 0 (2.3) 

In our case the role of the lower bound Z= H, is played bv the condition for an ex- 
ponential decrease 

Airy function) 

e is any positive 

To find o, (k), 

in rpPn as z--r--. Recalling (114), we obtain from Eq.(2.3) (u(z) is the 

(2.4) 

(2.5) 

constant. 

we use the zero boundary condition at Z= II,. We then obtain (c, is the n-th 
root of the Airy function) 

(3.6) 

With H1>i, only terms with sufficiently large n exist in the sum (2.1). Using the well- 
known asymptotic form ofthe root C, of the Airy function /12/, we obtain from (2.6) 

(2.7) 

We will now find the approximate expression for h, when n>l. For this, we substitute 

(2.4) into (2.2) and replace v(S) by zero when E>O and by the appropriate asymptotic form 
when E<O. Then, 

Substituting (2.8), (2.4) and (2.7) into (2.1) and putting 

1 z,=- 3nn 
1-9 

2kBH;” 
AL=3" 

wn ?kBH;‘* 

we obtain for H,>i an integral sum, which transforms into an integral as HI-a. The 
change of variables B= kB& o=(BE)-1 transforms this integral to 

(93) 

U (g, co) = sin BwtUI (g, co), UI (g, o) = 

Jo(gor) v I$‘. (IJP- z)] L’ [g1’12 (02 - zo)] 

(2.9) 

(2.10) 



Let us show that u satisfies Eq.Cl.1) under condition (1.4). It suffices to show that, 
given any o and g, C(g, m) satisfies the equation 

(2.11) 

Hence u, being the superposition (integral with respect to 
weight g"") of exact solutions of Eq.(Z.ll), will likewise be a 
Obviously, u=O fox t=0. In Sect.3 we find au/at for t=O 

aAu.'at ]!_, = 6 (I)& (y) 8 (z - it)) + Y (r, z) 

the parameters g and o with 
solution of the equation. 
and show that 

(2.12) 

where IF is a regular function for all i*,z. 
To facilitate further working, we transform (2.9) for u by writing the product to Airy 

functions in (2.10) as a product of integrals (2.5) respectively with respect to the variables 
m and n. 

We then make the change of variables CL= m+n, fl= m--n, and perform the integration with 
respect to fi. As a result we obtain 

(2.13) 

3. Check of the initial condition. We find au/c%[,=,. We differentiate (2.13) with 
respect to t and put t= 0. In the result, inasmuch as, with Imp>O we have /12/ 

we can perform the integration with respect to o. We then make the change of variables ~=l/z 
a = @'!", and also change the contour of integration with respect to B into a sum of segments 
of the real axis I~/>E and a semicircle of radius E with 8-O. We obtain 

(3.1) 

f (fq = B” - e - 2, 
12 .! 48 

fi = Et’*, p = tip+- tz - zo)2, 5 = z + z. 

We make the change of variable T= ~ZI in the integxal I, and then obtain 

(3.3) 

We now evaluate lim I, as e- 0. Since b-"'* is continued on the negative semi-axis through 
the upper half-plane, we have 

(3.3) 

where PO is the root of the equation i (PO) = 0. 
As a result, using (3.2), (3.3)‘ we obtain 

Hence (2.12) follows, where Y(I., z)= AY(r, z) is a regular function for z,>O andany 2%~. 

4. The asymptotic behaviour of tl(t,v, r,ro) for t>i.By (2.9) and (2.13)) we can 
write * us 
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It is clear from (4.1) that the asymptotic behaviour of u as t-co for fixed r.z,z,,, is 

determined, first by the value of F(o) at o=o, and second, by the singular points of F(O), 

i.e., by the values of o at which I:(o) ceases to be analytic. 
It can be shown that 

We now find the singular points of F(o)and their contribution to the asymptotic form of 

u as t-c-9. For this, in the last integral in (4.2) we perform the integration with respect 

to p on the real axis, then transform from the negative semi-axis to the positive axis by the 

change -B-J B. The result can be written as 

F(o)=?? , Q=- 
d$ :=o 

Using the relations 

and performing the integration with respect to g, we can obtain 

where the integration is performed only over the part S of the half-strip 0<13<2n,O<~ ~23, 
on which @((B, 8, <)> 0. The function Q(O), and along with it ~().s:I~=,, has singular points at 

whichtheanalyticity with respect to o is destroyed only for those o for which the boundary 
8.S of the domain of integration S, given by the equation ~9((B,e,:)= 0, has singular points for 
;=o , i.e., for those o for which there exists a real solution of the system 

@ (B, 8, 0) = 0, (Dp' (B, 8, 0) = 0, @e' (B, 8. 0) = 0 (4.3) 

From the last of Eqs.(4.3) we have COSI~=&~. From the second equation we have 

fi~=m+n*22Z, ,n = z0 - oa, n = z - 02 

In order for p to be real, we must have oB<min(z,zo). We put z>z,. Then the real root i3 
exists only for 69<z0 and has the form B= cz,1/-+a,I/< where a,,,=k:1. Substituting these 

relations into the first of (4.3) and noting that cosO= fi. o>O, we arrive at the equation 
for the singular point ol, with a,~,<0 and the singular point o1 with ala,>o: 

Noting that the left-hand sides of (4.4) are monotonically increasing functions of o,,~, 

and that the right-hand sides are decreasing functions, we can show that,when rl/z, > 21, (2 - ZJ", 
the singular points w,, o2 exist and the principal term of the asymptotic behaviour of u is 
defined by three terms, namely, the contributions of the points o = 0, ol, and 02: 

(4.5) 

where C,,, are functions of the variables ~,z,zO, independent of t. 

We can arrive at the result (4.4), (4.5) by a heuristic method, by using in (4.2) the 

asymptotic form of the Airy functions with 02<z,z0 and g-m, and writing the resulting 
integrals in the explicit asymptotic form. 
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ONE-DIMENSIONAL STABILITY OF DISSIPATIVE COUETTE FLOW* 

V.L. MAZO and M.S. RUDERMAIJ 

Non-stationary one-dimensional flow, and especially the one-dimensional 

stability of a stationary Couette flow of a viscous incompressible fluid 

is considered, taking into account dissipative heat, under the assumption 

that the viscosity decreases fairly rapidly, e.g., exponentially, as the 

temperature incrases. It is shown that when the fluid is very viscous, 

the non-stationary plane problem can be reduced to a non-stationary 

problem of heat transfer in media with heat sources depending non-linearly 
on temperature. The dependence of the heat sources on temperature in the 

latter problem differs substantially for different types of boundary 
conditions in the initial problem. If a tangential stress is specified at 

the boundary, then the density of the heat sources will depend on 

temperature locally (such a problem was studied earlier in /l-6/. When 

the velocities of the boundary planes are given, the density of heat 
sources will depend on the temperature distribution as a whole, over the 

volume. 
As regards the stationary flow inspected here for stability, it does 

not always exist, nor is it unique /7-14/. We can utilize the results of 

/l, 2, 15-19/ by reducing the problem of the existence and uniqueness of 
such flow to the stationary problem of the temperature distribution in media 

with heat sources depending non-linearly on temparture. 
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